If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-32k+11=0
a = 1; b = -32; c = +11;
Δ = b2-4ac
Δ = -322-4·1·11
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-14\sqrt{5}}{2*1}=\frac{32-14\sqrt{5}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+14\sqrt{5}}{2*1}=\frac{32+14\sqrt{5}}{2} $
| 3a+14=5a+4 | | 32°=4k° | | 3x−4+5x=12,5 | | 3/5x-3=2^14 | | 3=(1.12)^x | | 5/4x^2-12x+36=0 | | (x-9)(x-8)=x2-5x | | 5x-1=2x+27 | | (m-4)²+(m-7)²=7 | | 7*2x-35=41 | | (m-4)²+(m-7)=13 | | -4x-2(3x÷2)=-12 | | 18-3k=0 | | 6y−1y+4=y+6y+4 | | 8×x=64 | | x^2-(29/10)x+1=0 | | x^2-29/10x+1=0 | | m/2(3+m)=6 | | v5(v–6)=3v+2 | | v/5(v–6)=3v+2 | | 3x^2=9^8 | | 5+n8n=7 | | ⅔x-4=x+1 | | d=5(2)^2 | | d=5(1.5)^2 | | d=5(0.5)^2 | | 0,5-1-(2y+4)=y | | W=-1.5-0.75h | | 11+m=-9 | | d=5(0)^2 | | 1+x^2-2x=0 | | -1=-18/15x |